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(i) Proof by contradiction: suppose that n is square free and is also a rational number. Then, we can write it
in lowest terms: /n = ¢, where a.b € Z,b # 0, gcd(a,b) = 1. Now,
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By the last statement we know that n|a? <= a? = np;. Also, we can factor n as follow: n = p-q where p is a

prime. Replacing this factorization into the last equation we get that a® = (pq)p1 = p(qp1) = pla®. By Euclid’s
lemma pla <= a = pm. Replacing into the first equation:
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nb? = (pm)® = p’m® = pgb? = p*m? = q¢b* = pm’

Since n is square free and p is prime, n is not divisible by p?. Hence:
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By Euclid’s lemma, plb. From before we have that p|a, which contradicts the fact that £ is in lowest terms.
Therefore, 1/n, where n is square free, is not a rational number.
(ii) Proof by contradiction: suppose that /2 were rational. Then we can write it in lowest terms, i.e., V2 = 2
where a.b € Z,b # 0, ged(a,b) = 1. Then
3 a a® 3 3

Since 2 is a prime and 2|20 <= 2|a3, we can apply Euclid’s lemma to conclude that 2ja <= a = 2p for
some p € Z. Replacing this into our previous equation:

20 = 23p® = b =4p® —= 4® = 2p®

Applying Euclid’s lemma again 2|b, which together with 2|a contradicts the fact that ged(a,b) = 1. Hence, it
must be the case that /2 is irrational.

Suppose that given integers r, 7’ and m, we have that ged(r,m) = ged(r’,m) = 1. This means that for some integers
s,s',t,t' we have that sr +tm =1 and s'r" + t'm = 1. Consider the following product:

1= (sr+tm)(s'r +t'm) = ss'rr’ + srt'm + s'v'tm + tt'm? = ss'rr’ + m(srt’ + s'r't + tt'm)
Let ¢ = ss’ € Z and p = srt’ + s'r't + tt'm € Z, then 1 = grr’ + pm < gcd(rr’,m) = 1. QE.D

I claim that if d = sa + tb then d = a(s 4+ nb) + b(t — na) for n € N.

Proof: By simple arithmetic: a(s+nb)+b(t —na) = as+nab+ bt —nab = sa+tb = d. In particular, this means that
there exists infinitely many pairs of integers (s, t,) for which d = s,a + t,b. Simply take (s,,t,) = (s + nb,t — na)
for n € N.

Suppose that ged(a,b) = 1 and a|n and bjn. Then, n = a-p =b- g, for some integers p,q. Hence, a|b- q. Applying
Corollary 1.40, we can conclude that alg, i.e. ¢ = a-¢’. Replacing this into the above equation for n, we obtain
n=>b-a-¢ =(a-b)-q, which means that ab|n.

This is a two part proof: (in what follows, a,a’,b,b,¢,q € Z)

(i) Suppose cla and ¢|b. Then a = ca’ and b = cb/. Consider b —a = b’ —ca’ = ¢(b —a') <= c¢|b — a. Hence, the
same divisor of @ and b divides b — a. This means that ged(a,b) < ged(b — a,a).

(ii) Suppose c|b — a and cla. Then b —a = ¢q and a = ca’. Consider b =cq—a =c¢q—ca’ = c(q—a') < ¢lb.
Hence, the same divisor of b — a and a divides b. This means that gcd(b — a,a) < ged(a.b).



Together, (i) and (ii) imply that ged(a,b) = ged(b — a, a)

(1.62) T am going to do this proof same as before (1.60). (In what follows, a,b,c, e, k,p1,p2,03,04,05 € Z) Also, let
e = gcd(b, ¢). By definition, e|b <= b= ep3 and e|c <= ¢ = eps.

(i) Suppose klab and k|ac. Then, ab = kp; and ac = kpe. Consider ab = aeps = kp; and ac = aepy = kpo
= ae = kpaps < kjae.

(ii) Suppose that k|ae. Then, ae = kps. Consider, ab = *PSepy = kpsps <= k|ab. Likewise, ac = k—:‘e’f’em =

kpspy < k|ac ‘
Together, (i) and (ii) imply that a - ged(b, ¢) = ged(ab, ac)

(1.64) Proof by Induction. Let S(n) : F,,41 and F,, are relatively prime, i.e., ged(Fp41, F) = 1.

Base Case S(1): Iy, = 1; Fy = 0 = gcd(Fy, F1) = ged(1,0) = 1. Base case holds true.
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Inductive Step. Assume S(n) true. We want to show that S(n + 1) is true, ie. ged(F(py1)41, Fni1)
We begin as follow:

gcd(Fryo, Fry1) = ged(Fnyo — Fug1,Fay1) By exercise (1.61)
= gcd(Fp, Fry1) By definition of Fibonacci sequence.
= 1 by IH. Q.E.D.
(1.66)
(i) Let d = ged(a,b,c) and let e = ged(b,c¢) and f = ged(a, ged(b, ¢)). By definition d|a,d|b, and d|c. Also, by
definition e|b, e|c, f|a, and f|e. From f|e and e|b we conclude that f|b. Likewise, from f|e and e|c we conclude
that f|c. Therefore, of f we have that f|a, f|b, and f|e. But from definition if f is a common divisor of a, b, c,
which we just showed, then f|d.
Also, from d|b and d|c we can conclude that, d|gcd(b,c) <= dle, i.e., a common divisor divides the ged.
Applying this same reasoning but with premises d|a and d|e we obtain that d|gcd(a,e) <= d|f.
Therefore, we have that f|d and d|f, and we can conclude that f = +d. However, these are defined as
the greatest common divisor, so we can conclude that f = d.
(ii) (120,168,328) = (120, (328,168)) = (120, (168,160)) = (120, (160,8)) = (120,8) =8
(1.67)

(i) Let 2 = g + ip be a complex number such that ¢ > p and ¢,p € Z™. Then, on the one hand:

2] = |z-2]
= (g +ip)(qg+ip)|
= |¢* + 2ipq — p?|

= |(¢* — p?) + 2ipq|

= (@@ —pH)? + (2pq)?
On the other: ) i

|z = [q+ip|

= @

= @2+

So, if 22| = |2 <= /(¢ —p?)2+ (2pq)2 = ¢* + p* <= (¢* — p*)? + (2pq)® = (¢* + p?)?, which shows that
(¢*> — p?,2pq, ¢*> + p?) is a Pythagorean triple by letting a = ¢> — p?,b = 2pq and ¢ = ¢* + p?
(ii) Suppose that (9,12, 15) is a Pythagorean triple of the type given in (i). Then, there exists p,q € ZT with ¢ > p
such that:
(¢° = p*.2pq,¢* + p*) = (9,12,15)
Meaning that: ¢? — p? = 9 and 2pg = 12 and ¢? + p? = 15. From the second equation we get that pg = 6, whose

only positive integer solutions are ¢ = 3,p =2 OR ¢ = 6,p = 1. Neither one of these solutions satisfy the other
equations and hence, (9,12,15) is not of type given in (i).



